Network Intrusion Detection Based on Rough Set and K-nearest Neighbour
نویسندگان
چکیده
Increasing numbers of interconnected networks to the internet have led to an increase in cyber attacks which necessitates the need for an effective intrusion detection system. In this paper, two machine learning techniques: Rough Set (LEM2 Algorithm) and k-Nearest Neighbour (kNN) are used for intrusion detection. Rough set is a classic mathematical tool for feature extraction in a dataset which also generates explainable rules for intrusion detection. The experimental study is done on the international Knowledge Discovery and Data mining tools competition (KDD) dataset for benchmarking intrusion detection systems. In the entire experimentations, we compare the performance of Rough Set with k-Nearest Neighbour. The results generated from the experiment reveal that knearest neighbour has a better performance in terms of accuracy but consumes more memory and computational time. Rough Sets classifies at relative short time and employs simple explainable rules.
منابع مشابه
Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملKernel-Based Fuzzy-Rough Nearest Neighbour Classification.dvi
Fuzzy-rough sets play an important role in dealing with imprecision and uncertainty for discrete and real-valued or noisy data. However, there are some problems associated with the approach from both theoretical and practical viewpoints. These problems have motivated the hybridisation of fuzzy-rough sets with kernel methods. Existing work which hybridises fuzzy-rough sets and kernel methods emp...
متن کاملA Review on Hybrid Intrusion Detection System Using TAN & SVM
The dramatically development of internet, Security of network traffic is becoming a major issue of computer network system. Attacks on the network are increasing day-by-day. The Hybrid framework would henceforth, will lead to effective, adaptive and intelligent intrusion detection. In this paper, We propose a hybrid fuzzy rough with Naive bayes classifier, Support Vector Machine and K-nearest n...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کامل